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Abstract: Consistent and spatially explicit periodic monitoring of forest structure is essential for
estimating forest-related carbon emissions, analyzing forest degradation, and supporting sustainable
forest management policies. To date, few products are available that allow for continental to global
operational monitoring of changes in canopy structure. In this study, we explored the synergy
between the NASA’s spaceborne Global Ecosystem Dynamics Investigation (GEDI) waveform LiDAR
and the Visible Infrared Imaging Radiometer Suite (VIIRS) data to produce spatially explicit and
consistent annual maps of canopy height (CH), percent canopy cover (PCC), plant area index (PAI),
and foliage height diversity (FHD) across the conterminous United States (CONUS) at a 1-km
resolution for 2013–2020. The accuracies of the annual maps were assessed using forest structure
attribute derived from airborne laser scanning (ALS) data acquired between 2013 and 2020 for the
48 National Ecological Observatory Network (NEON) field sites distributed across the CONUS.
The root mean square error (RMSE) values of the annual canopy height maps as compared with
the ALS reference data varied from a minimum of 3.31-m for 2020 to a maximum of 4.19-m for
2017. Similarly, the RMSE values for PCC ranged between 8% (2020) and 11% (all other years).
Qualitative evaluations of the annual maps using time series of very high-resolution images further
suggested that the VIIRS-derived products could capture both large and “more” subtle changes in
forest structure associated with partial harvesting, wind damage, wildfires, and other environmental
stresses. The methods developed in this study are expected to enable multi-decadal analysis of forest
structure and its dynamics using consistent satellite observations from moderate resolution sensors
such as VIIRS onboard JPSS satellites.

Keywords: VIIRS-NOAA 20; GEDI Ecosystem LiDAR; vegetation 3D structure; random forest
regression models; airborne discrete return LiDAR; accuracy assessment

1. Introduction

Human activities and natural processes are rapidly changing the global distribution
and 3-dimensional (3-D) structure of forests [1,2]. These changes have broad impacts
on earth system processes and the sustainability and diversity of living organisms [3,4].
Monitoring changes in forest structure is crucial for advancing research related to carbon
and biogeochemical cycles [5,6], ecosystem functioning [7], and biological conserva-
tion [8].

While much is known about the diversity of vegetation structure and species com-
position in North American forests [2,9], datasets are still needed to characterize the rates
of change in forest structure, carbon flux, and stock dynamics [10,11]. For example, the
degradation of forest stocks from selective logging, low-severity disturbances, and the
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regeneration rates of forests following a disturbance remains poorly characterized at the
scales needed for assessing carbon dynamics, water quality and quantity, and other environ-
mental goods and services [10,12]. Accurate estimates of the 3-D distribution of vegetation
structure and their changes over time are thus of critical importance in studies of global
environmental change and terrestrial biodiversity as well as in numerical weather and
water predictions [11,13–15].

A major challenge to monitoring changes in forest structure from optical and radar
data at continental to global scales has been the difficulty of obtaining high-quality, glob-
ally representative training samples. The high costs and logistic burdens associated with
collecting needed training data using ground-based methods are unbearable for any in-
dividual project or organization. The deployment of the GEDI-LiDAR instrument on the
International Space Station (ISS) in late 2018 [11] greatly improved the sampling of global
forests using LiDAR [16,17]. GEDI is the first space-borne, full-waveform LiDAR that was
specifically designed to measure ecosystem structure by providing vertical profiles of forest
canopies with 25-m footprints on the ground [11]. Since April 2019, the instrument has
collected more than 10 billion cloud-free footprints sampling more than 4% of the land
surface between 51.6 degrees north and south on a sparse sampling grid.

Signal processing algorithms have been used by the GEDI team to derive from the
GEDI waveforms canopy height models and other structural variables including canopy
cover, vertical plant area, and foliage height diversity profiles [18,19]. Compared to its first
iteration, the second version of the GEDI products released on 16 Apr 2021 has improved
geolocation accuracies (20 m for the first version and 10 m for the second version [11]) and
provides additional datasets that allow the end-users the flexibility to select the subset of
waveforms better suited for their particular application [20].

Measurements from GEDI are limited to samples collected along the laser tracks [11].
GEDI data consist of footprint-based measurements collected between ~51.6◦N and ~51.6◦S
globally, but data coverage is limited by the ISS orbit inclination [16]. Gridded products
at the 1-km scale are being produced from the valid footprints within each grid cell [21].
The recent extension of the GEDI mission into 2023 will result in more valid footprints
and therefore more representative sampling of vegetation structure within each 1-km2

cell. However, the spatial coverage of the gridded products is incomplete and they will be
produced for the mission years only [11,21].

The integration of GEDI footprints with on-orbit optical data (e.g., Landsat, Sentinel,
MODIS, VIIRS) could allow for the interpolation of spatially explicit and dense time
series of forest structure properties spanning multiple decades [16,22]. A multi-decadal
record of forest structural dynamics is especially valuable for understanding how forests
respond to disturbances [23,24], how it changes during post-disturbance recovery [25],
and the interactions between disturbance, recovery, and climate change [26]. Such a long
forest structure record will enable new research aimed at advancing the understanding
and protection of global biodiversity [27,28], reducing uncertainties with the global carbon
budget [6,10,29,30], and improving model studies of key climate and hydrological processes
important to the global environmental system [31].

Together with machine learning algorithms, optical observations from systems like
Landsat, MODIS, and VIIRS were used to extrapolate LiDAR measurements to produce
spatially contiguous map products for a single year as in [16,32–34]. Vegetation cover and
canopy height models derived from Airborne Laser Scanning (ALS) data have also been
used with Landsat and MODIS data to characterize inter-annual changes in forest cover
and tree height in the Lower Mekong region [35] and map multi-decadal changes in forest
structure across Canada [36].

While spaceborne GEDI is more sensitive to vegetation 3-D structure than spaceborne
optical and radar instruments, the stochasticity in the GEDI waveforms caused by a number
of factors including geolocation inaccuracies, digitizer noise, pulse shape, terrain slope,
varying atmospheric transmission, and surface reflectance do introduce uncertainties in
modeling canopy height and the other canopy structure profiles [37]. Such uncertainties
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can be characterized using ALS data since ALS data collected during the leaf-on season
have been found to provide estimates of forest structure comparable to ground-based
measurements [38–44]. Several studies used ALS data to validate forest structure products
derived from space-borne platforms, including canopy height, canopy cover, and height
profiles [16,34,37,45–47]. The errors in GEDI L2A canopy height product (version 2) were
quantified in [47] using contemporaneous high-resolution, locally calibrated ALS-derived
canopy height data collected for the National Science Foundation’s National Ecological
Observatory Network (NEON) field sites in the U.S. mainland and Hawaii. They found
that the GEDI product yields reasonable estimates of canopy height (RMSE 3.56 m) when
only the power beam data acquired at night were used. The accuracy was lower RMSE
7.21 m when the NEON ALS data were compared to GEDI data regardless of daytime or
beam strength.

In our previous work [22], we demonstrated that machine-learning algorithms can be
used to integrate VIIRS observations with GEDI-derived estimates of forest structure to
produce spatially explicit, wall-to-wall estimates of canopy fractional cover (CFC), canopy
height (CH), plant area index (PAI), and foliage height diversity (FHD) across the CONUS
for a single year (2019). In this study, we used a similar approach to produce annual
estimates of the same key forest structure attributes across the CONUS for the eight years
from 2013–2020. We further characterized the uncertainties of these annual estimates by
comparing these estimates with forest structure products calculated from the ALS data
collected over the NEON field sites. The specific objectives of the study were:

(i) to model the relationships between the second release of GEDI data and VIIRS obser-
vations collected in 2019 in order to develop a suite of well-calibrated models that can
map the four forest structure attributes across the CONUS;

(ii) to apply the models to the VIIRS archive to produce global forest structure map
products on an annual basis from 2013 to 2020;

(iii) to demonstrate the robustness of the products by validating the resulting forest struc-
tural estimates using 2020 GEDI data and independent NEON ALS data acquisitions
from 2013 to 2020 that encompass a broad range of forest types and conditions; and

(iv) to produce a qualitative evaluation of the potential of the annual products to capture
changes in forest structure that may rise from disturbance and recovery.

The steps used in this study to produce and evaluate the accuracy of the annual
(2013–2020) wall-to-wall forest structure products are shown in Figure 1. The resulting
annual suite of calibrated and validated forest structure attributes will be valuable for
understanding how forest responds to disturbances and how it changes during post-
disturbance recovery.
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els that were trained using the 2019 data were applied to the VIIRS observation period from 2013 to 
2020. The uncertainties in the annual map products were then evaluated using airborne laser scan-
ning (ALS) data collected for the National Science Foundation’s National Ecological Observatory 
Network (NEON) field sites in the U.S. mainland. 

2. Materials and Methods 
2.1. VIIRS Multitemporal Metrics 

Daily surface reflectance data from the Suomi National Polar-Orbiting Partnership 
(Suomi NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) VIIRS sensor were used 
in this study. Following previous MODIS and VIIRS-based global vegetation and land 
cover studies [48–53], we used surface reflectance data from the nine moderate resolution 
bands, including M1-M5, M7, M8, M10, and M11. The swath data with a nadir resolution 
of 750 meter were gridded following the MODIS Sinusoidal projection system with a nom-
inal 1-kilometer (~926 meter) resolution to create CONUS mosaics. For each year from 
2013 to 2020, the 9 M-Bands were processed to create a set of multi-temporal spectral met-
rics to serve as consistent land surface inputs for mapping 3-D canopy structures. This 
section provides an overview of VIIRS data processing. More details have been described 
in previous studies [48,50,53]. 

The daily VIIRS surface reflectance data were aggregated to create 5-day and 32-day 
composites using the self-adaptive compositing approach, which employs spectral and 
temporal information to determine the general surface cover condition (e.g., vegeta-
tion/land, water, snow/ice) of a given pixel and adaptively select the most suitable com-
positing criterion for that pixel [53]. The monthly composited values were used to create 
the annual spectral metrics using the methods described in [50,54]. Compositing reduces 
temporal inconsistencies associated with clear-sky data availability, cloud shadow and 

Figure 1. Flowchart of the steps used to produce and evaluate the accuracy of annual (2013–2020)
wall-to-wall forest structure products. The canopy height, canopy cover, plant area index (PAI),
and foliage height diversity index (FHDI) forest structure products were obtained by exploiting the
synergy between VIIRS and GEDI measurements using Machine Learning (ML) algorithms. The
models that were trained using the 2019 data were applied to the VIIRS observation period from
2013 to 2020. The uncertainties in the annual map products were then evaluated using airborne laser
scanning (ALS) data collected for the National Science Foundation’s National Ecological Observatory
Network (NEON) field sites in the U.S. mainland.

2. Materials and Methods
2.1. VIIRS Multitemporal Metrics

Daily surface reflectance data from the Suomi National Polar-Orbiting Partnership
(Suomi NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) VIIRS sensor were used
in this study. Following previous MODIS and VIIRS-based global vegetation and land
cover studies [48–53], we used surface reflectance data from the nine moderate resolution
bands, including M1-M5, M7, M8, M10, and M11. The swath data with a nadir resolution
of 750 m were gridded following the MODIS Sinusoidal projection system with a nominal
1-km (~926 m) resolution to create CONUS mosaics. For each year from 2013 to 2020, the
9 M-Bands were processed to create a set of multi-temporal spectral metrics to serve as
consistent land surface inputs for mapping 3-D canopy structures. This section provides
an overview of VIIRS data processing. More details have been described in previous
studies [48,50,53].

The daily VIIRS surface reflectance data were aggregated to create 5-day and 32-day
composites using the self-adaptive compositing approach, which employs spectral and tem-
poral information to determine the general surface cover condition (e.g., vegetation/land,
water, snow/ice) of a given pixel and adaptively select the most suitable compositing
criterion for that pixel [53]. The monthly composited values were used to create the annual
spectral metrics using the methods described in [50,54]. Compositing reduces tempo-
ral inconsistencies associated with clear-sky data availability, cloud shadow and snow
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cover contamination [55] and hence may allow more consistent mapping of vegetation
structure [48,49,54].

For each year in the data record, the VIIRS-derived annual surface type (2013–2020) [48,50],
and the geographic position of each pixel encoded in coordinates of latitude (−90–90◦)
and longitude (−180–180◦) were added to the annual and monthly composite data. The
inclusion of geographic position was based on the hypothesis that because large-scale
climate patterns exert strong control on the geographic distribution of vegetation biomes,
geographic position serves as a good predictor of land cover and vegetation class at
continental to global scales [52]. The compositing process resulted in 8 annual multi-
temporal metrics representing the surface conditions for each year from 2013 to 2020. Each
multi-temporal metrics had 144 variables. The list of variables in every annual multi-
temporal metric that were used to produce spatially explicit maps of CH, CFC, PAI, and
FHD across the CONUS are listed in Table 1.

Table 1. Multi-temporal metrics used to produce wall-to-wall maps of tree canopy structure. Band x
refers to each of the 9 composited M-Bands (M1-M5, M7, M8, M10, and M11).

Metric Name Description

Annual Metrics Maximum NDVI value
(69 variables) Minimum NDVI value of 8 greenest months

Mean NDVI value of 8 greenest months
Amplitude of NDVI over 8 greenest months

Mean NDVI value of 4 warmest months
NDVI value of warmest month

Maximum band x value of 8 greenest months.
Minimum band x value of 8 greenest months.

Mean band x value of 8 greenest months.
Amplitude of band x value over 8 greenest months.

Band x value from month of maximum NDVI.
Mean band x value of 4 warmest months.

Band x value of warmest month.

Monthly Composites Band X-32 days composite value of 8 greenest months
(72 variables)

Annual Surface type Surface type IGBP class value

Pixel geographic coordinates Longitude value of VIIRS pixel in decimal degree
Latitude value of VIIRS pixel in decimal degree

2.2. GEDI Data Processing

With an overarching goal to advance the understanding of ecosystem structure and
dynamics, GEDI has been optimized for retrieving vegetation vertical structure [11]. It
uses waveform LiDAR to sample the Earth’s surface between 51.6◦N and 51.6◦S from
the International Space Station (ISS). The GEDI instrument consists of three lasers: one
“coverage” laser and two “full power” lasers. The three lasers produce a total of eight-beam
ground transects that are spaced approximately 600 m apart on the Earth’s surface in the
cross-track direction. Each beam transect consists of ~25 m footprint samples approximately
spaced every 60 m along track.

The fundamental footprint observations made by the GEDI instrument are received
waveforms of energy as a function of receive time. The valid waveforms are then used
in [18,19] to derive the directional gap probability profile and the canopy structure vertical
profiles. This suit of GEDI mission standard products (GEDI Level 02B; Version 2 [19])
include CH, CFC, PAI, and FHD derived from the ~25 m footprints. CFC is the percent of
the ground covered by the vertical projection of canopy material. CH is canopy top height.
PAI is similar to leaf area index but incorporates, in addition to leaves, all other canopy
structural elements (e.g., branches and trunks). FHD, also known as Shannon’s diversity
index, describes the vertical heterogeneity of foliage profile [56].
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Version 2 of the GEDI level 02B product [57] over CONUS were obtained for the
period from 18 April 2019 to 31 August 2020. Differences from the first release of the
GEDI products include better geolocation for orbital segments, and a modified method
to predict an optimum algorithm setting group per laser shot. The obtained data had
855,688,803 GEDI level 02B valid waveforms and footprints of CH, CFC, PAI, and FHD.

The quality of the derived forest structure attributes from GEDI waveforms can vary
due to the effects of known (e.g., pulse shape, pulse energy, digitizer noise) and unknown
(e.g., atmospheric attenuation, local slope, multiplicative scattering, background solar
illumination) factors. These factors affect the accuracy of determining the ranging points
along the waveform and thus the quality of forest structure estimates [37]. For example,
the GEDI coverage beam waveforms under dense canopy cover conditions may return a
weak ground signal that is difficult to detect against high background noise [20]. Waveform
“sensitivity” values in the GEDI products provide an estimate for the relative minimum
percentage of the waveform energy return that needs to be present in the ground for it to
be detected [11,58]. Therefore, in dense forests, only waveforms with high “sensitivity”
values have a good probability of detecting the ground ranging point.

To select the highest quality data, we utilized the GEDI quality flags and applied
additional selection criteria (Table 2) in order to exclude footprints with poor geolocation
performance, poor signal quality, locations with urban structures, and the footprints col-
lected during daytime and during the leaf-off period. A more complete description of the
GEDI data products quality flags is provided in [18–20]. This selection process retained a
subset of 114,790,783 GEDI waveforms or ~13.71% of the data. Of these 63,261,705 wave-
forms were collected in 2019 and 51,529,078 were collected in 2020. The number of GEDI
footprints removed at each step in the filtering process are listed in Table 3.

Table 2. Summary of the quality flags and the criteria used in this study for selecting the “best”
GEDI data.

Flag Name or
Criteria Description Criteria for Retaining

Data

“Degrade” flag
Indicates periods when the geolocation
performance suffers due to non-optimal
operating conditions

“Degrade” flag = 0

Solar elevation
Indicates day/night data acquisition time
with nighttime waveforms not impacted by
solar background illumination.

Solar elevation < 0

Sensitivity metric
Indicates the relative minimum percentage of
the waveform energy return that needs to be
present in the ground for it to be detected.

Sensitivity > 0.95 where
tree cover * > 95%, else

sensitivity > 0.9

Coverage beams
Indicates whether the waveforms are from
coverage or full power lasers with beams # 0,
1, 10, and 11 generated by coverage beams.

Coverage beams where
tree cover < 95%.

“Leaf off” flag
Indicates if the observation was recorded
during leaf-off ** conditions in deciduous
forests and woodlands.

“Leaf-off” flag = 0

“quality flag”

Indicates whether the laser shot meets
criteria based on energy, sensitivity,
amplitude, and real-time surface
tracking quality.

“quality flag” = 1

“urban proportion”
Indicates the percentage urban land cover
within a focal area (~18 m or ~30 m)
surrounding the GEDI shot ***.

urban proportion = 0

* Based on Landsat-derived tree cover in the year 2010, defined as canopy closure for all vegetation taller than
5 m in height (Hansen et al.). ** The leaf-on/leaf-off determination was based on the NPP VIIRS Global Land
Surface Phenology Product (VNP22Q2: Zhang, X. et al. 2018). *** Urban land cover was derived from the DLR
12-m resolution TanDEM-X Global Urban Footprint Product.
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Table 3. Remaining number of GEDI waveforms and the number of filtered waveforms.

Filter Number of Filtered
Waveforms

Remaining Number
of Waveforms

Urban (TANDEM X, HBASE, & NLCD) 25,014,304 830,674,499

Leaf-off acquisitions 135,477,824 695,196,675

Day time acquisitions 373,282,653 321,914,022

Low quality L2A and L2B data 162,520,536 159,393,486

Coverage beam data in dense forests
(tree cover ≥ 95%) 17,199,226 142,194,260

Data with sensitivity values <95% in dense
forests (tree cover ≥ 95%) 7,156,792 135,037,468

Poor geolocation performance 20,246,685 114,790,783

The GEDI vegetation product suite appears to overestimate canopy height over many
non-forest areas [16,22]. To address this problem, several available intermediate-scale
(30–100 m) land cover products were used to identify GEDI footprints located in areas that
have little or no woody vegetation (<10% tree cover) following the rules shown in Figure 2.
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We retained all GEDI values located in the grid cells classified by the National Land
Cover Database (NLCD-LC 2016) [59] as forests and woody wetlands or had a percentage
tree cover value > 10% in any of the three continuous vegetation products used in this
study. These were the NLCD 2016 tree canopy cover (TCC) [60], the global land analysis
and discovery (GLAD) TCC [61], and the 2019 Copernicus Global Land Cover (CGLS-
LC100) [62]. The remaining GEDI footprints that were located in the areas classified by
NLCD-LC as water or permanent snow had their canopy structure attributes reset to
zero. We then used the 2019 and 2020 United States Department of Agriculture Cropland
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data layers (USDA-CDL) [63] to interrogate the GEDI-canopy height values in cultivated
areas. Tree crops, except Walnuts and Pecans, are often managed not to grow taller than
12 m [64–69]. GEDI footprints with TH values >12 m were excluded from further analysis
since it is likely that GEDI overestimated tree height in these areas. Tall field crops (e.g.,
corn, sugarcane, and sunflower) rarely exceed a height of 6 m. We excluded the GEDI
footprints from further analysis if the footprint TH value exceeded 6 m. The GEDI values
collocated with field crops other than corn, sugarcane, and sunflower were edited to have
CH, CFC, PAI, and FHD values reset to zero. Finally, the GEDI-footprints located in barren
areas, grasslands and shrub lands with less than 10% shrub cover had their forest structure
attributes reset to zero (Figure 2). Out of the 114.8 million GEDI footprints, approximately
half of a million were excluded from further analysis due to possible overestimation of
vegetation canopy height and 34.7 million GEDI-footprints had their CH, CFC, PAI, and
FHD values reset to zero due to being located in areas that had no woody vegetation.
Table 4 provides a breakdown of the distribution of GEDI footprints per land cover type,
the number of footprints where the GEDI-derived forest structure values were reset to zero
and the number of GEDI footprints excluded from further analysis.

Table 4. Distribution of GEDI footprints per land cover type, the number of footprints where the
GEDI-derived forest structure values were reset to zero, and the number of GEDI footprints not
included in further analysis due to possible overestimation of vegetation canopy height.

Land Cover
Total Number
of GEDI
Footprints

Number of GEDI
Footprints with
Derived Forest
Structure Values
Reset to Zero

Number of
Filtered
GEDI
Footprints

Forests with 10% or more tree cover 46,977,984 0 0

Walnuts and Pecans 15,175 0 0

All other fruit trees 174,376 0 2535

Corn, sugarcane, and sunflower 5,310,592 0 77,208

All other field crops 13,371,258 13,371,258 0

Water, ice, and snow 42,638 42,638 0

Woodlands and shrubs > 10% cover 27,611,668 0 402,597

Woodlands and shrubs ≤ 10% cover
(e.g., Barren, grasslands, and
herbaceous wetlands)

21,287,092 21,287,092 0

Total 114,790,783 34,700,988 482,339

The remaining GEDI level 02B footprints collected in 2019 (63,261,705 footprints) were
mapped into the VIIRS standard global 1-km Sinusoidal grid system. This resulted in 3.65
million collocated VIIRS–GEDI paired data records. The number of GEDI footprints falling
within a collocated VIIRS grid cell ranged between 1 and 157 observations. Of the 3.65
million collocated VIIRS–GEDI paired data records, 2.08 million (or 56.94%) contained 20
or more GEDI footprints whereas only some 150 thousand contained 50 or more GEDI
footprints. Table 5 shows the number of VIIRS–GEDI data records with 20+, 30+, 40+, and
50+ collocated GEDI footprints. Generally, a higher number of GEDI footprints within a
VIIRS pixel should better represent the variability of canopy structure attributes within that
pixel. However, as the cutoff value of collocated GEDI footprints increases, the number
of collocated GEDI–VIIRS paired data records decreases exponentially. This is especially
the case in dense forests and is a direct result of filtering out the GEDI footprints collected
using the coverage beam and the GEDI footprints with sensitivity metric < 0.95. Using
high cutoff values could therefore result in an inadequate representation of forest types and
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conditions, which could in turn affect the ability of the machine learning models to explain
the full range of variability in forest conditions across the CONUS.

Table 5. Number of 2019 VIIRS–GEDI paired data records with 20, 30, 40, and 50 or more collocated
GEDI observations and their distribution within NLCD 2016 land use and land cover classes.

Distribution amongst NLCD LULC Classes

Dataset
Number

Number of
GEDI

Footprints
Per VIIRS

Pixel

Number of
GEDI–VIIRS
Paired Data

Records

Forest Shrubs Grass/Crops Wetland Barren

1 20 or more 2,076,650 9% 23% 65% 0.06% 2%

2 30 or more 774,555 8% 21% 69% 0.05% 2%

3 40 or more 460,406 5% 25% 68% 0.03% 3%

4 50 or more 190,520 5% 21% 72% 0.03% 3%

For each of the datasets (1 through 4) in Table 5, the mean and median values of
the GEDI-derived forest structure attributes within the coincident VIIRS grid cells were
calculated (Figure 3). This was done in order to investigate the relationships between VIIRS
and GEDI data products. The output are metrics of GEDI forest structure attributes paired
to their collocated 2019 VIIRS annual metrics data. Henceforth, these are referred to as the
2019 GEDI–VIIRS paired data records.
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Figure 3. A graphical representation of the method used to calculate mean and median GEDI forest
structure attributes with a VIIRS pixel. (a) Location of GEDI footprints (yellow points) collocated
with a VIIRS pixel (red parallelogram), (b) GEDI waveform (red line) and the derived RH profile for
a single GEDI footprint, (c) the GEDI-derived vertical profiles used in the calculation of percent tree
cover (%cover), Plant area index (PAI), and foliage height diversity (FHD), (d) derived tree height
statistics from the collocated GEDI footprints, and (e) derived tree cover statistics.
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The distributions of the GEDI–VIIRS paired data records in Table 5 under samples
forests (forests were estimated in [48,59] to cover ~26% of the CONUS land area) and
oversamples grasslands and croplands. According to NLCD [59], grasslands and croplands
cover ~46% of the CONUS land area, whereas 65% or more of the GEDI–VIIRS paired data
records are located in these land cover classes.

To reduce the impacts of sub-optimal sampling on modeling forest structure attributes
from VIIRS data, the LiDAR –VIIRS paired data records were randomly subsampled to
obtain a distribution that matches that of the land cover classes in NLCD 2016 (Table 6).
The GEDI–VIIRS paired data records were then split into equally sized training and testing
subsets using a 25-km checkerboard grid (Figure 4). Selecting spatially disaggregated
training and testing data should reduce the impacts of spatial autocorrelation on model
validation results [44,52].

Table 6. Number of 2019 VIIRS-GEDI paired data records with 20, 30, 40, and 50 or more collocated
GEDI observations retained after subsampling from the total population of GEDI–VIIRS paired
data records.

Distribution within NLCD LULC Classes

Dataset
Number

Number of
GEDI

Footprints
Per VIIRS

Pixel

Number of
GEDI–VIIRS
Paired Data

Records

Forest Shrubs Grass/Crops Wetland Barren

1 20 or more 1,503,004 26% 26% 46% <1% 1.5%

2 30 or more 231,876 26% 26% 46% <1% 1.5%

3 40 or more 91,222 26% 26% 46% <1% 1.5%

4 50 or more 33,562 26% 26% 46% <1% 1.5%
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Figure 4. (a) The distribution of GEDI−VIIRS paired data records testing and training subset with
a cutoff value of 30 or more GEDI footprints per VIIRS pixel, and (b) the 25-km checkerboard
used to subset the GEDI–VIIRS paired data records into training (blue points) and testing (green
points) subsets.
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The same data processing procedures applied to the 2019 GEDI data were then applied
to the 2020 GEDI level 02B footprints. The 51,529,078 footprints were mapped into the
VIIRS standard global 1-km Sinusoidal grid system. This resulted in 2.71 million collocated
VIIRS–GEDI paired data records. The 2020 GEDI–VIIRS paired data records were then
subsampled to obtain a distribution that matches that for the NLCD land cover classes. The
VIIRS–GEDI paired data records were then subset into training and testing data using the
same checkerboard approach applied to the 2019 GEDI–VIIRS paired data records.

2.3. NEON ALS Data

The National Science Foundation’s National Ecological Observatory Network (NEON)
is a US-wide observation network with its sites strategically located across the U.S. to
capture variability in ecological and climatological conditions [70] (see also Figure 4). The
network spans a wide range of terrestrial ecosystems from shrublands to forests (Table 7).
Airborne LiDAR surveys were conducted over NEON field sites during peak greenness
to provide ecosystem three-dimensional structural information. The LiDAR sensors are
typically flown at an altitude of 1000 m above ground level (AGL) and operated at a pulse
return frequency PRF between 100 and 400 kHz. At these PRFs, 2–8 laser pulses per square
meter will typically intercept the landscape. If the ground cover produces multiple returns,
a point density of up to 64 points per square meter can be obtained. In areas where flight
lines overlap, the number of pulses or points can be higher.

Table 7. Number of NEON sites across the CONUS classified by their dominant NLCD 2016 land
cover type.

Dominant NLCD Class Number of Sites

Cultivated Crops 3
Deciduous Forest 14
Dwarf Scrub 2
Emergent Herbaceous Wetlands 3
Evergreen Forest 15
Grassland 4
Mixed Forest 1
Pasture 1
Shrub 3
Woody Wetlands 2

The NEON Level 1 Discrete Return LiDAR Point Cloud data product [71] was obtained
for the 48 NEON sites across the CONUS. Since 2013, Airborne LiDAR surveys were carried
over most NEON sites three or more times. Each airborne survey covered an area of
100–300 km2. The number of airborne surveys across the CONUS averaged 5 surveys per
year for the period 2013–2015. Since 2016, the average number of surveys sharply increased
to 30 surveys/year (Table 8).

Table 8. Number of airborne LiDAR surveys flown over NEON sites across the CONUS.

Year Number of Surveys

2013 5
2014 5
2015 5
2016 24
2017 46
2018 27
2019 39
2020 18
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Pertinent information in the NEON LiDAR point cloud data include the projected
location and elevation above Geoid for each point in the cloud as well as the relative signal
intensity, point return number, and point classification (‘ground’, ‘vegetation’, ‘building’,
‘noise’ and ‘unclassified’).

The classified NEON LiDAR data were obtained in tiles measuring 1 km by 1 km in
the compressed LAZ format. The tiles from each airborne survey were decompressed and
merged into one file in LAS format using the LAStools software suite [72]. ALS data were
then processed using the GEDI simulator software suite [58] to simulate GEDI waveforms
and to derive canopy height models, canopy cover, PAI and FHD vertical profiles. The
GEDI simulator was described in detail and validated in [58]. Waveforms are simulated
following the methods proposed in [73]. The waveforms simulated from discrete return
LiDAR were compared to observed large-footprint LiDAR over dense tropical forests [73].
It was found that the method could accurately recreate the waveform shapes. As long as
the ALS data are of sufficient pulse density (greater than 3 pulses/m2), the simulated RH
metrics, compared to collocated LVIS (Land, Vegetation, and Ice Sensor) LiDAR waveforms,
was found in [58] to have less than 0.22 m bias.

The GEDI waveforms were simulated from the ALS points classified as ground and
canopy. The classified points were used to distinguish the ground and canopy portions of
the waveform. This is required for estimating canopy cover, plant area index, and foliage
height diversity [74]. The parameters for simulating the GEDI waveforms from ALS points
are given in Table 9. The GEDI system pulse was assumed to be near Gaussian and defined
by the full-width half-maximum of the Gaussian (FWHM = 15.6 ns) as in [58]. In simulating
the GEDI waveforms, the ALS points were normalized for ALS point density and weighted
by the number of hits each beam records (weight = 1/number of hits), which assumes that
each hit along a laser beam intersects a surface of equal area, as used in [74].

Table 9. Performance metrics of the Random Forest Regression models against the set-aside 2019
GEDI test data.

Number of GEDI
Shots Per VIIRS

Pixel
MDAE R-Squared RMSE MAE

CH models

50 or more 1.179 (m) 0.867 3.559 (m) 2.177 (m)
40 or more 1.147 (m) 0.869 3.517 (m) 2.133 (m)
30 or more * 1.155 (m) 0.878 3.553 (m) 2.159 (m)
20 or more 1.225 (m) 0.856 3.705 (m) 2.257 (m)

CFC models

50 or more 1.11% 0.851 7.25% 3.91%
40 or more 1.15% 0.859 7.15% 3.87%
30 or more * 1.22% 0.862 7.54% 4.11%
20 or more 1.37% 0.855 8.10% 4.45%

PAI models

50 or more 0.026 0.800 0.351 0.170
40 or more 0.028 0.816 0.345 0.167
30 or more * 0.030 0.826 0.366 0.179
20 or more 0.031 0.805 0.376 0.184

FHDI models

GE 50 0.219 0.863 0.276 0.129
GE 40 0.212 0.867 0.269 0.123
GE 30 * 0.208 0.875 0.264 0.12
GE 20 0.220 0.859 0.283 0.132

* The RF models that were selected to extrapolate annual wall-to-wall maps of forest structure attributes across
the CONUS.

The waveform may contain several distinct modes representing reflecting surfaces
within each footprint. The modes in the on-orbit GEDI waveforms are detected at the
zero crossing points of the first derivative of the de-noised data [18]. To process the ALS-
simulated waveforms, we similarly selected, in the GEDI simulator, the zero-crossing
point of the first derivative for the detection of the ranging points. The waveforms and the
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detected modes are then used to calculate canopy relative height (RH) metrics, canopy cover
fraction (CCF), plant area index (PAI), and foliage height diversity (FHD) as described
in [19,58]. The simulations resulted in 25-m spatially explicit grids of forest structure
attributes for all the NEON sites across the CONUS. The ALS-derived grids were then
collocated with their contemporaneous VIIRS pixels. Statistical summaries (mean, median,
count, and standard deviation) were then calculated from the ALS-derived data for each
collocated VIIRS pixel. This dataset will be used for the validation of the VIIRS-derived
wall-to-wall forest structure maps (see Section 2.5).

2.4. Forest Structure Mapping

The training subset from the 2019 GEDI–VIIRS paired data records (Table 6, Section 2.2)
was used to train random forest regression models [75] that can predict GEDI-like CH,
CFC, PAI, and FHD. In total, VIIRS-derived multi-temporal metrics containing 144 vari-
ables (Table 1, Section 2.1) were used as input features (i.e., independent variables) in
model construction.

Random forest regression models are ensemble machine learning methods [75]. Ran-
dom forests grow a user-defined number of regression trees and averages their predictions.
In random forests, each tree in the ensemble (i.e., forest) is built from a sample drawn with
replacement (i.e., a bootstrap sample). Furthermore, when splitting each node in a tree, the
best split is found either from all input features or from a random subset of features [76].
The size of the subset of features and other regression tree model hyperparameters (e.g.,
number of trees in the forest, the maximum depth of the regression trees, etc.) that produce
optimal model performance were evaluated in [22]. The values of the optimal random
forest hyper-parameters used in [22] were also used in this study.

The random forest (RF) regression models that can predict the GEDI-like CH, CFC,
PAI, and FHD were calibrated using the training subsets obtained from the VIIRS–GEDI
paired data records listed in Table 6. In total, 16 RF models were trained (four models
per forest structure attribute). The VIIRS–GEDI paired data records testing subsets were
used to evaluate the ability of the 16 models to explain the variances observed in the
GEDI-derived canopy structural elements (R squared values as a measure of the precision
of the models). The evaluation criteria used included the mean and median absolute errors
(MAE, and MDAE; respectively), as well as the root-mean-squared error (RMSE) values
calculated from the differences between the GEDI and VIIRS predicted forest structure
attributes. We also investigated model bias by calculating the distribution of differences
between model-derived canopy structural elements and their corresponding GEDI-derived
values at multiple intervals of each variable’s distribution. Because the training samples
are not located near the testing samples (see Section 2.3), the risk of the derived accuracy
assessments being overestimated due to spatial autocorrelations between training and
testing samples should be low [52,77].

Based on the model evaluation criteria, the “better” performing models were applied
to the VIIRS metrics in order to produce annual (2013–2020) wall-to-wall maps of canopy
height, fraction canopy cover, plant area index, and foliage height diversity for the conter-
minous US. In producing the wall-to-wall maps, water bodies were not processed since the
GEDI data used in model calibration did not include observations over water. The 926.65-m
grid size water mask was calculated from the global 231.66-m land/water product [78].
Any 926.65-m pixel was flagged as a water pixel if any of the 16 spatially coincident pixels
in the original product were classified as water pixels.

2.5. Validation of the Generated Products

The VIIRS-derived products should be consistent over time to allow monitoring
of changes in forest structure that result from natural growth, disturbance, and post-
disturbance recovery. In order for the products to be consistent over time, a key requirement
is that the VIIRS observations are consistent. Thanks to long-term, careful and systematic
calibration and monitoring efforts [79], the VIIRS–NPP have produced highly consistent
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surface reflectance products since 2013 [80]. Therefore, the RF models developed by the
integration of GEDI and VIIRS observations should allow the derivation of consistent
annual forest structure products back to 2013 when the earliest complete annual VIIRS
observation record became available.

We quantify the quality and consistency of the mapped products using: (1) the in-
dependent ALS-derived forest structure attributes (see Section 2.3); (2) the 2020 GEDI
validation dataset (see Section 2.2); and (3) qualitatively by contrasting the annual profiles
of VIIRS-derived forest structure attributes with known disturbance events and annual
visual interpretations of very high-resolution aerial images. The criteria for the quantitative
assessments were the same used in Section 2.4; namely r2, RMSE, MAE, and MDAE.

The NEON ALS data were used to quantify the overall quality of the VIIRS products
and to produce annual assessments for the years 2016 to 2020. There were only five NEON
ALS campaigns per year for the years 2013 to 2015. The small size of the validation sample
from 2013 to 2015 could not therefore be used to produce annual assessments. Rather, the
ALS data collected over the 3-year period were used to produce an aggregate assessment
of the accuracy of the VIIRS products for 2013–2015. Compared to the ALS data, the
on-orbit 2020 GEDI testing dataset greatly improves the spatial representativeness of the
validation results.

3. Results
3.1. Development and Evaluation of Random Forest Models

The 2019 GEDI–VIIRS paired data records (Table 6, Section 2.2) were used to train
random forest regression models that can predict GEDI-like forest structure attributes
across the CONUS from the wall-to-wall VIIRS observations. The reserved 2019 GEDI test
data (see Section 2.2) were used to evaluate the ability of these models to reproduce the
GEDI-derived CH, CFC, PAI, and FHD values.

Model evaluation results are summarized in Table 9. The RF models trained with 30+
coincident GEDI footprints per VIIRS pixel slightly outperformed the RF models trained
with 20+ coincident GEDI footprints per VIIRS pixel. However, using higher thresholds
(40+) of coincident GEDI footprints per VIIRS pixel, in general, did not improve the models’
performance while using a 50+ threshold reduced the ability of the models to explain
the variance in the test GEDI data (Table 9). Furthermore, the GEDI–VIIRS data records
with 40+ and 50+ collocated GEDI observations appeared to under-sample dense canopies
across the CONUS. Therefore, the RF models trained using the 2019 GEDI–VIIRS paired
data records that contained 30+ coincident GEDI footprints per VIIRS pixel were selected
to map the four forest structure attributes across the CONUS.

When calculated over the entire data range, comparisons between the 2019 GEDI test
data and the collocated 2019 VIIRS-mapped values had negligible bias and offset values
(Figure 5). Boxplots were used to investigate the distribution of the differences between the
VIIRS and the GEDI values at different intervals representing the range of canopy height
values. The RF canopy height model underestimated GEDI-derived canopy height data for
tall (>33 m) trees (Figure 6a). Similarly, the Plant Area Index model underestimated the
GEDI-derived Plant Area Index at index values greater than 3 (Figure 6c). Underestimation
of fraction tree cover in denser forests was less pronounced, while the comparisons of FHD
values showed good correspondence between the modeled and reference data for all strata
(Figure 6b,d).

To correct for the underestimation of the VIIRS-derived CH values, we divide the GEDI-
derived CH values into 1-m bins. The mean GEDI-derived and their corresponding VIIRS-
derived CH values were calculated for each bin. A scatter plot (Figure S1, Supplementary
Material) between the two sets of mean CH values revealed a piecewise relationship with:
(1) a near-perfect 1:1 relationship for CH values < 33 m (GEDI mean CH = VIIRS mean CH +
0.09 m, r2 = 1); and (2) a linear underestimation of GEDI mean CH (GEDI mean CH = 1.5 ×
VIIRS mean CH −16.12 m, r2 = 0.93) for CH values ≥ 33 m. These linear relationships were
then applied to the wall-to-wall maps to correct for the underestimation in GEDI-derived
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CH values. By adjusting the VIIRS-derived CH values using these linear functions, most of
the biases between the VIIRS and GEDI-derived mean CH values were removed.
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3.2. Annual Maps of Forest Structure Attributes

The RF models and bias correction methods developed and validated in Section 3.1
were applied to the VIIRS annual metrics and other predictor variables listed in Table 1
to produce maps of the four forest structure attributes for each year from 2013 to 2020.
Visual assessments of the annual canopy height and canopy cover maps revealed that they
consistently captured the expected height and cover variations related to the distribution
of natural forest types. For example, the tallest modeled trees were in the Northwestern
Forested Mountains as well as in the coast range of the Marine West Coast Forests. These
areas are home to very tall conifer species such as the Western Red Cedar and the Coast
Redwood. On the other hand, the temperate forests of the Blue Ridge and the Central
Appalachians consistently had the highest modeled tree canopy cover (Figure 7). In general,
we find that the spatial variations of forest structure attributes across the CONUS to be
similar to those described in more detail in [22].
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Figure 7. (a) 2020 wall−to−wall VIIRS−derived canopy cover map, and (b) 2020 wall−to−wall
VIIRS−derived canopy height map. From right to left: panel 1© shows canopy cover in 2013 prior to
fire disturbance events (red polygons are the MTBS fire disturbance boundaries occurring between
2014−2019) and canopy cover in 2020 after the fire disturbance vents; panel 2© shows canopy height
in 2017 (left) and 2020 (right) showing the impacts of Hurricane Michael 2019 on derived canopy
height; panel 3© demonstrates the ability of the maps to detect “more” subtle changes in canopy
cover associated with selective logging (blue polygon). High-resolution satellite image insets visually
demonstrate post-disturbance impacts on vegetation structure.

However, a pixel-by-pixel comparison between the 2019 maps produced in this study
with their counterparts produced in the Rishmawi et al. study [22] revealed some important
improvements in the current RF model outputs. First, the problem of overestimation of
canopy height and cover across agricultural, urban, and large swaths of barren lands,
especially on steep slopes, was clearly less prevalent in the maps produced here than
in [22]. Second, the maximum-modeled canopy height and tree cover values in this study
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were greater by ~5 m and ~10% than their corresponding modeled values in [22] with the
larger differences often found in landscapes dominated by tall and dense forests (Figure 8).
Furthermore, the current model outputs better explained the variance in the collocated
GEDI-derived values than the modeled outputs in [22]. Cumulatively, these changes
in model performance allowed a more realistic characterization of the range of canopy
conditions along environmental gradients.
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Figure 8. (a) A difference map between the 2019 canopy height produced in this study and the 2019
canopy height map in Rishmawi et al. (2021). Red shades indicate areas in this study with lower
derived canopy height values (inset 1©) while green shades in inset 2© show areas with comparatively
higher canopy height values. (b) Is the same as in (a) but for percent canopy cover. From left to right:
panel 1© shows significant improvements in modeling canopy height in barren areas that can be
attributed to the corrections applied to the GEDI canopy height data (black circles); panel 2© shows
improvements in modeling canopy height in agricultural areas with field crop height values ~ 0 m
in the current study; and 3© shows for the densely forested landscapes higher canopy cover (green
areas) values than in Rishmawi et al. (2021).



Remote Sens. 2022, 14, 2320 19 of 32

3.3. Temporal Consistency of Mapped Forest Structure Products
3.3.1. Comparisons with the GEDI 2020 Test Data

We evaluated the ability of the modeled products to reproduce the GEDI-derived
forest structure attributes for the year 2020. We first compared the 2020 mapped products
to the 2020 GEDI test dataset. We then contrasted these evaluation results to those obtained
from comparing the 2019 maps to the 2019 GEDI test datasets (Section 3.1). This was done
in order to assess any reductions in the ability of the RF models that were trained using the
2019 datasets to reproduce the GEDI-like forest structure attributes from the 2020 VIIRS
data. We found that the differences in RMSE values for CH, CFC, and PAI between the two
assessment years did not exceed 3.5% (Table 10). The changes in r2 values between the two
assessment years were similarly small and did not exceed 0.035. However, the RMSE value
of 0.381 for the 2020 FHD map was significantly higher than its corresponding 2019 RMSE
value of 0.264. These results suggest that the models developed using the 2019 data can be
used to model the canopy structure attributes using the 2020 VIIRS data with very small
losses in product precision and accuracy (Table 10).

Table 10. Evaluation results of the 2020 and 2019 mapped forest structure attributes obtained by
comparisons with their corresponding 2020 and 2019 GEDI-derived values.

Model Output Median
Absolute Error R Squared Mean Absolute

Error RMSE

2020 Canopy Height (m) 1.28 0.854 2.225 3.549
2019 Canopy Height (m) 1.16 0.878 2.159 3.553
2020 Plant Area Index 0.031 0.798 0.186 0.375
2019 Plant Area Index 0.030 0.826 0.179 0.366
2020 Canopy Fraction Cover 1.30% 0.838 4.30% 7.80%
2019 Canopy Fraction Cover 1.22% 0.862 4.11% 7.54%
2020 Foliage Height Diversity 0.233 0.840 0.295 0.381
2019 Foliage Height Diversity 0.208 0.875 0.120 0.264

We further assessed the distribution of the differences between the 2020 maps and
GEDI CH values for intervals representing the range of canopy heights (Figure 9). By
adjusting the initial RF model predictions using the piecewise regressions (see Section 3.1),
most of the biases between the VIIRS and GEDI derived mean CH values were removed
(Figure 9). Boxplots of the distribution of differences between CFC, PAI, and FHD and
their corresponding 2020 GEDI values (Figure S3, Supplementary Materials) showed good
correspondence between the modeled and reference data. Furthermore, the plots of the
relationships between the collocated 2020 GEDI test data and the 2020 mapped products
(Figure S2, Supplementary Materials) revealed negligible bias and offset values. Altogether,
these results suggest that the models developed using the 2019 data can be used to model
the canopy structure attributes using the 2020 VIIRS data without large reductions in
products’ precision and accuracy.

3.3.2. Comparisons with the ALS Data

The ALS-derived forest structure attributes from the airborne campaigns carried
over the 48 NEON sites were collocated with the 1-km VIIRS-derived products. For each
collocated VIIRS pixel, we calculated the count, mean, median, and standard deviation
of the ALS-derived CH, CFC, PAI, and FHD footprints. The total number of collocated
ALS-VIIRS data records was 22,640, covering a total area of 19,730 km2 across the CONUS.
A single VIIRS pixel should contain 1372 ALS-derived footprints. However, some VIIRS
pixels were not completely covered by ALS-derived footprints. Incomplete coverage was
the result of multiple reasons including partial overlap between the ALS and the VIIRS
pixel, the presence of water within the VIIRS pixel, and ALS data with a point density
<3.5 points/m2, etc.
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Figure 9. Distribution of residuals between (a) 2020 VIIRS and GEDI-derived canopy height
prior to mean bias adjustment; and (b) 2020 VIIRS and GEDI-derived canopy height post mean
bias adjustment.

We retained the ALS–VIIRS paired data records where the ALS-derived footprints
covered at least 80% of the VIIRS pixel. The retained 14,645 ALS–VIIRS paired data records
were then used to evaluate the VIIRS products. Compared to the evaluations using the 2020
on-orbit GEDI data (Table 10), the evaluations of the VIIRS products using ALS (Table 11)
had slightly lower accuracies and precision values for the four mapped products. For
instance, the CH ALS-comparison RMSE value was ~0.5 m higher than the comparison with
GEDI data. The largest reduction in accuracy was for the plant area index (PAI). PAI RMSE
value increased to 0.636 (70% higher than the RMSE value obtained from the comparison
with GEDI). Scatterplots provide better insights into the nature of the relationships between
the VIIRS and ALS-derived forest structure attributes (Figure 10). The upper limit of the
VIIRS-derived PAI values is approximately four, while the corresponding ALS-derived
values exceeded four in many cases (Figure 10c). Similarly, the VIIRS-derived FHD values
do not appear to reproduce well their corresponding ALS-derived values towards the
variables’ higher distributions (Figure 10d).
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Table 11. Overall assessment of the VIIRS products accuracy using the collocated ALS-derived data
for the period 2013–2020.

Model Output Median Absolute
Error R Squared Mean Absolute Error RMSE

Canopy Height (CH) (m) 1.946 0.804 2.863 3.975
Plant Area Index (PAI) 0.283 0.79 0.423 0.636

Canopy Fraction Cover (CFC) 5.81% 0.85 8.14% 11.30%
Foliage Height Diversity (FHD) 0.261 0.804 0.32 0.412
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The ALS data were further used to evaluate the temporal consistency of project
products for the years 2013–2020. In general, we found small annual variations in the
precision and accuracy of the four forest structure products across the years (Table 12). For
example, RMSE values for CH ranged between 3.31 m (2020) and 4.19 m (2017), while the
RMSE value for the model year (2019) was 3.75 m. Similarly, the RMSE values for CFC
ranged between 8% (2020) and 11% (all other years). Most importantly, the validation
results for 2019 do not appear to be systematically better than those for the other years. Out
of the 20 cases where the 2019 results could be compared to those of other years, there are
only 9 cases where 2019 had slightly better R2 values. In all other 11 cases, the 2019 results
were comparable to or slightly worse than those for the other years. This comprehensive
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assessment provided no clear evidence showing that when the models derived using
2019 GEDI and VIIRS data were applied to VIIRS observations acquired in other years,
the resultant map products would suffer obvious accuracy loss relative to maps derived
using 2019 VIIRS data. Therefore, it is reasonable to expect that models derived using
contemporaneous GEDI data and observations acquired by global monitoring systems such
as VIIRS and MODIS could be applied to the temporally consistent spectral data acquired
by those systems in other years to produce temporally consistent map products for all four
forest structure attributes included in this study.

Table 12. Evaluation results of the annual mapped products’ comparison with the ALS data for the
period 2013–2020.

Attribute Year Number
of Points MDAE R-Squared RMSE MAE

Canopy Height (CH) (m) 2020 1481 0.9 0.77 3.31 2.09

Canopy Height (CH) (m) 2019 2790 1.7 0.79 3.75 2.64

Canopy Height (CH) (m) 2018 3361 1.85 0.76 3.99 2.82

Canopy Height (CH) (m) 2017 3672 2.02 0.81 4.19 3.03

Canopy Height (CH) (m) 2016 1775 1.78 0.81 3.7 2.61

Canopy Height (CH) (m) 2013–2015 1566 2.66 0.73 4.27 3.31

Canopy Fraction Cover
(CFC) 2020 1481 0.02 0.79 0.08 0.05

Canopy Fraction Cover
(CFC) 2019 2790 0.06 0.79 0.12 0.09

Canopy Fraction Cover
(CFC) 2018 1880 0.08 0.77 0.12 0.09

Canopy Fraction Cover
(CFC) 2017 3672 0.049 0.83 0.11 0.074

Canopy Fraction Cover
(CFC) 2016 1775 0.061 0.85 0.11 0.083

Canopy Fraction Cover
(CFC) 2013–2015 1566 0.08 0.79 0.12 0.095

Plant Area Index (PAI) 2020 1481 0.31 0.66 0.49 0.35

Plant Area Index (PAI) 2019 2790 0.25 0.75 0.65 0.42

Plant Area Index (PAI) 2018 1880 0.29 0.77 0.56 0.41

Plant Area Index (PAI) 2017 3672 0.22 0.76 0.57 0.366

Plant Area Index (PAI) 2016 1775 0.29 0.81 0.66 0.41

Plant Area Index (PAI) 2013–2015 1566 0.43 0.69 0.89 0.63

Foliage Height Diversity
(FHD) 2020 1481 0.19 0.69 0.39 0.285

Foliage Height Diversity
(FHD) 2019 2790 0.28 0.76 0.41 0.32

Foliage Height Diversity
(FHD) 2018 1880 0.29 0.71 0.43 0.33

Foliage Height Diversity
(FHD) 2017 3672 0.23 0.83 0.39 0.3

Foliage Height Diversity
(FHD) 2016 1775 0.24 0.82 0.41 0.311

Foliage Height Diversity
(FHD) 2013–2015 1566 0.34 0.69 0.47 0.38
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3.4. Usefulness of the Annual Maps for Change Monitoring

One of the most important uses of the products is the annual monitoring of changes
in forest structure. Wall-to-wall analysis of changes in forest structure dynamics can be
obtained by the temporal examination of changes in CFC, CH, PAI, and FHD. As an
example, Figure 9 shows the changes in CFC across the CONUS over an eight-year period
from 2013 to 2020. The dynamics of canopy cover differed between the Western and Eastern
parts of the CONUS. Over the eight-year period, some 56,000 km2 of western forests (west
of −100◦ parallel) lost more than 10% of their cover, while only 22,000 km2 of forests
increased their cover density by 10% or more. The trend in the forests to the east of −100◦

parallel was opposite to that in the West (Figure 11). Further nuances on forest structure
dynamics can be derived from the temporal analysis of annual values of forest structure
attributes of undisturbed and disturbed forests. Analysis of post wildfires canopy cover
dynamics revealed, on average, very slow recovery during the six to seven years after
disturbance in the fire-prone ecoregions to the West, such as in the Sierra Nevada and
Northern Rockies. Faster cover recovery rates were found for much of the Eastern forests,
such as in the Ozark/Ouachita-Appalachian forests (Figure 12).
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Figure 11. (a) Changes in percentage tree cover from 2013 to 2020 (VIIRS 2020−VIIRS 2019) for
the conterminous US. Over the period of 8 years, some 56,000 km2 of western forests (west of
−100◦ parallel) lost more than 10% of their tree cover while only 22,000 km2 of forests increased their
cover density by 10% or more (b). To the east, the area of forests with gains in canopy cover of 10% or
more exceeded 285,000 km2 compared to 199,000 km2 of forests that lost 10 or more of their canopy
cover (c).



Remote Sens. 2022, 14, 2320 24 of 32

Remote Sens. 2022, 14, x FOR PEER REVIEW 25 of 33 
 

 

 
Figure 11. (a) Changes in percentage tree cover from 2013 to 2020 (VIIRS 2020−VIIRS 2019) for the 
conterminous US. Over the period of 8 years, some 56,000 km2 of western forests (west of −100° 
parallel) lost more than 10% of their tree cover while only 22,000 km2 of forests increased their cover 
density by 10% or more (b). To the east, the area of forests with gains in canopy cover of 10% or 
more exceeded 285,000 km2 compared to 199,000 km2 of forests that lost 10 or more of their canopy 
cover (c). 

 

 

 
Figure 12. Post wildfires (2014) canopy cover dynamics 2014–2020 calculated from all pixels within 
the MTBS fire boundary for four fire-prone EPA level two ecoregions (a–d). These show very slow 
post-disturbance recovery of canopy cover. Faster cover recovery rates (e,f) were found for much of 
the Eastern forest such as in the Ozark/Ouachita–Appalachian forests blue ridge and southeastern 
Plains. Black lines represent the mean canopy cover values. Gray lines represent the mean ± 2 stand-
ard deviations of the distribution of values within the MTBS fire boundary. 

(c) (d) 

(e) (f) 

(b) (c) 

(a) (b) 

Figure 12. Post wildfires (2014) canopy cover dynamics 2014–2020 calculated from all pixels within the
MTBS fire boundary for four fire-prone EPA level two ecoregions (a–d). These show very slow post-
disturbance recovery of canopy cover. Faster cover recovery rates (e,f) were found for much of the
Eastern forest such as in the Ozark/Ouachita–Appalachian forests blue ridge and southeastern Plains.
Black lines represent the mean canopy cover values. Gray lines represent the mean ± 2 standard
deviations of the distribution of values within the MTBS fire boundary.

We further examined the ability of the annual maps (2013–2020) to capture both abrupt
and “more” subtle changes in forest structure associated with natural growth, disturbance,
and post-disturbance recovery. Presented examples show the potential of annual time series
to detect abrupt changes in forest structure associated with wind damage in the Florida
Panhandle (Figure 13a) which was caused by Hurricane Michael. The annual time series
can also detect “more” subtle changes in forest structure associated with natural growth
(Figure 13b). A subset of data from Washington State also shows gradual reductions in
forest height and forest cover associated with selective logging operations followed by
forest recovery (Figure 13c). Data from the State of Colorado highlight gradual reductions
in forest height and cover associated with environmental stresses (Figure 13d).
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Figure 13. Annual canopy height (CH) and canopy fraction cover (CFC) derived from the annual
VIIRS multi-temporal metrics observations acquired over 8 years (2013–2020) plotted over time
for: (a) forest trees overthrown by wind damage from Hurricane Michael in the Florida panhandle;
(b) gradual increases in forest height and canopy cover associated with natural growth in northern
California; (c) a forest gradually thinned over multiple years (2013–2015) and recovered afterward
in Washington State; and (d) subtle reductions in tree height and forest cover associated with
environmental stress. Red polygons drawn on top of the GoogleEarth images show the 926-m VIIRS
pixel area used to create the plots to the left.

4. Discussion

By directly measuring the distance to canopy and ground targets and the energy
reflected by those targets, the GEDI LiDAR measurements are more sensitive to vegetation
structure than optical and radar instruments [37]. By comparing GEDI canopy height
measurements to ALS data collected from some 40 NEON sites representing a wide range
of vegetation and land cover types across the CONUS, it was demonstrated that the GEDI
derived canopy height values provide reasonable estimates of canopy height when the
GEDI power beam and night data were used [47].

However, measurements from the GEDI instrument are limited to samples collected
along the laser tracks, and while the GEDI instrument has collected more than 10 billion
cloud-free waveforms, track spacing, clumping in the ISS orbital tracks, and removal of
GEDI waveforms unsuitable for measuring canopy structure can result in large coverage
gaps at the 1-km grid [81,82]. For instance, version 2 of the GEDI L3 Gridded mean canopy
height 1-km × 1-km global product, which integrates data from the GEDI sensor over a
period of two years [21], has significant coverage gaps over the CONUS. In addition, a high
fraction of the 1-km pixels canopy height values were calculated from 10 or less valid GEDI
waveforms. Especially in heterogeneous landscapes, under-sampling can result in high
mean standard errors [83] and thus in an inaccurate representation of canopy structural
attributes at the 1-km resolution grid cell [52,84].
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The VIIRS optical system, on the other hand, has been providing spatially contiguous
global observations on a daily basis since 2012. By combining the GEDI and VIIRS remotely
sensed data sources, we were able to exploit the forest structure detail provided by GEDI
and the extensive spatial and temporal coverage provided by VIIRS to produce annual
(2013–2020) wall-to-wall maps of forest canopy height, cover, plant area index, and foliage
height diversity.

Many issues can complicate the retrieval of vegetation structure from GEDI wave-
forms, including cloud contamination, large terrain variations, man-made structures, and
field crops, among others [11,16,19]. GEDI products include a suite of quality flags to
identify some but not all of these issues. Some of the unresolved issues have been found
to overestimate canopy height and cover over many non-forested areas [16,22]. To miti-
gate this problem, we used available land cover products in order to create a mask that
identifies regions that are unlikely to have any woody vegetation. The mask was defined
based on multiple land cover, impervious/urban, cropland, forest, and woodland cover
products. With these products, a set of rules were defined to change the GEDI values over
areas with no woody vegetation. In these areas, all GEDI recorded values were set to zero.
Additionally, erroneously high GEDI canopy height values in non-forested woodlands
(shrublands and tree crops) were dropped from further analysis. Compared to the results
in [22], the above corrections reduced the problem of CH, CFC, PAI, and FHD overestima-
tion in non-forested areas for both the GEDI- and VIIRS-derived products. Improvements
resulting from such corrections were especially evident for urban areas, barren areas with
topographic relief, as well as in areas dominated by field crops.

Previous studies integrating LiDAR and optical data using regression forests (RF) or
regression trees reported an underestimation of tree height in tall forests [16,22,85]. In these
studies, it was suggested that the underestimation might be due to:

• the problematic behavior of the random forest regression models in situations where
the training and prediction inputs differ in their range and/or distributions (i.e.,
covariate shift);

• the low sampling rate in the training data of very tall forests;
• the loss of sensitivity of optical data, especially in the visible spectrum, to increasing

LAI/PAI values [86–88]; and
• the GEDI data underestimating tree height in tall forests.

However, the comparison of GEDI with the NEON ALS canopy height data in [47]
demonstrated that while the canopy height itself strongly affects the retrieval accuracy,
with RMSEs increasing with canopy height, they found no evidence to suggest that
GEDI underestimated canopy height in tall forests. This suggested that the relatively
low sampling rate in tall forests and the problematic yet associated RF model covariate
shift might play an important role in underestimating canopy height for tall trees in
the wall-to-wall maps. In an attempt to mitigate this issue, we resampled the GEDI
training data, which in [22] under-sampled forests and oversampled grasslands and
croplands, so that the fraction of GEDI training data for each land cover type equaled
its actual percentage area coverage across the CONUS. Compared to the results in [22],
the RF models fitted using the resampled training data were better able to capture the
range of variability in canopy structure across the CONUS but did not eliminate the
underestimation of canopy height for trees higher than 33 m. Since the average difference
between GEDI and VIIRS-derived canopy height values increased linearly with canopy
height, it was possible to adjust the VIIRS-derived data to match the GEDI-derived data
using a linear transformation.

The RF models developed using the 2019 GEDI–VIIRS data were applied to VIIRS
observations acquired from 2013 to 2020 to produce annual map products for those years.
The resultant products need to be consistent over time to allow for the detection of changes
in forest structure associated with natural growth, disturbance, and post-disturbance
recovery. We first evaluated the ability of the products to detect changes in forest structure
associated with known disturbance events (Figure 7, panels 1–2). The products were able to
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capture most disturbances that occurred in the observation period that resulted in abrupt
changes in forest structure associated with the removal or destruction of standing trees.
Moreover, several examples of the more subtle changes in forest structure associated with
partial harvest, selective harvest, and wind damage can be detected in time series plots
of any of the four products (e.g., Figure 13, 4th row). The ability to detect at least some
of the subtle changes can be the consequence of the time series having low noise of the
estimates made over time. However, the ability of the products to detect small sub-pixel
disturbances is limited by the spatial resolution of the VIIRS instrument. Comparisons
with more spatially resolved forest structure time-series data such as from the Landsat data
record [16,61] could provide a better understanding of the detection limits of sub-pixel
disturbances for these 1-km products.

To increase the utility of the annual products, we quantified their accuracy by
comparing the products to ALS-derived forest structure attributes. We used the ALS
data collected by the National Ecological Observatory Network from 2013 to 2020 as
validation data. This was done because: (1) the network spans a wide range of terrestrial
ecosystems from shrublands to forests; (2) the airborne LiDAR surveys were conducted
during peak greenness; (3) the return point density of the data (>3.5 points/m2) can
produce accurate forest structure attributes that are comparable to field measurements
(references). For the four modeled attributes, the VIIRS-derived maps explained 80% or
more of the observed variability in ALS data. Individual years comparisons between
VIIRS and ALS data showed little variation in RMSE values for canopy height which
ranged between a minimum of 3.31-m (2020) and a maximum of 4.19-m (2017). Similarly,
the RMSE values for CFC ranged between 8% (2020) and 11% (all other years). These
results further illustrated that the RF models trained using one year of GEDI data can be
applied to VIIRS observations acquired over other years to produce consistent annual
maps of forest structure attributes.

There were differences between the validation results with ALS data compared to
the validation results obtained from the comparisons with the set aside 2020 GEDI data.
The lower precision and accuracy values in the ALS comparisons could have resulted
from multiple factors including, errors in the GEDI products [47] which were propagated
through the RF models into the VIIRS-derived values, differences in the two validation
datasets’ spatial distribution, and their associated representation of the range of ecosystems
and vegetation types, and any loss of information associated with reconstructing the GEDI
waveforms from the point return ALS data.

5. Conclusions

This study produced the first set of well-calibrated and comprehensively validated
annual products on forest canopy height, canopy cover, plant area index, and the vertical
distribution of foliage density measured by foliage height diversity for CONUS. The
annual maps are available for download from (10.5281/zenodo.6525901). An annual record
of forest structural dynamics can be valuable for understanding how forests respond
to disturbances [23,24], how it changes during post-disturbance recovery [25], and the
interactions between disturbance, recovery, and climate change [26].

The results derived through this study can inform sustainable forest management
policies, aid the verification of carbon credits [89], and support forest-based sustainable
development and climate solutions [90,91], including the Reducing emissions from de-
forestation and forest degradation (REDD+) program [90–92], and the United Nation’s
Sustainable Development Goals (SDG) initiative [92,93]. The annual products on for-
est canopy height, canopy cover, plant area index also have the potential to improve
the land surface parameterization of land surface models for numerical weather and
climate predictions.
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GEDI-derived canopy height; (b) VIIRS and GEDI-derived fraction cover, (c) VIIRS and GEDI-derived
Plant Area Index; and (d) VIIRS and GEDI-derived foliage height diversity.
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